
一、名词解释。
过冷度:金属的理论结晶温度和实际结晶温度的差值
均质形核:在没有任何外来的均匀熔体中的形核过程
异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程
异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。
形核速率:在单位时间单位体积内生成固相核心的数目
液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法
复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体
定向凝固:使金属或者合金在熔体中定向生长晶体的方法
溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值
流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性
液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力
影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热导率金属的结晶特点。(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和
影响液态金属凝固过程的因素:主要因素是化学成分 冷却速度是影响凝固过程的主要工艺因素 液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响
液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。凝固过程中由传热。传质和溶
质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。机械搅动、铸型震动、外加磁场。
铸件的凝固方式:层状凝固方式(动态凝固曲线之间的距离很小的时候)、体积凝固方式(动态凝固曲线之间的距离很大的时候)、中间凝固方式(介于中间情况的时候)、
影响铸件凝固方式的因素有二:一是合金的化学成分,二是铸件断面上的温度梯度。
热力学能障动力学能障:热力学能障是右被迫处于高自由能过度状态下的界面原子产生的他能直接影响系统自由能的大小,动力学能障是由于金属原子穿越界面过程引起的,他与驱动力的大小无关,而仅仅取决于界面的结构和性质,例如激活自由能。单从热力学条件来看,液相的自由能已经大于固相的自由能,固相为稳定相,相变应该没有能障,但是要想液相原子具有足够的的能量越过高能界面,还需动力学条件,因此液态金属凝固过程中必须克服热力学和动力学两个能障。液态金属在成分、温度、能量、上不是均匀的,即存在成分、能量、结构的三个起伏,正是这三个起伏去克服热力学和动力学能障,使凝固过程能够进行下去。 凝固过程当中溶质分配的平衡条件:凝固界面上溶质迁移的平衡、固相
液相内部扩散的平衡。
热过冷:金属凝固时所需过冷度完全由传热所提供仅由熔体实际温度分布决定、
成分过冷:凝固时由于溶质再分配,固液前沿溶质浓度变化,引起理论凝固温度的改变而在固液界面前液相内形成的过冷,这种由于固液界面前方溶质再分配引起的过冷叫做成分过冷
成分过冷对晶体的外貌有什么影响:无成分过冷平面生长,窄成分过冷胞状生长,较宽成分过冷区柱状树枝晶生长,宽成分过冷区自由树枝晶生长。
就合金的宏观结晶状态而言, 平面生长、胞状生长柱状树枝晶生长都属于一种晶体自型壁生核然后由外向内单向延伸的生长方式,称为外生长,而等轴晶是在液体的内部自由生长的,称为内生长。
枝晶距离指的是相邻同次枝晶之间的垂直距离
热过冷完全由热扩散控制,成分过冷不仅由热扩散控制还和溶质扩散相关。
产生成分过冷具备两个条件:固液界面前沿的溶质的富集而引起成分再分配、固液界面前方液相的实际温度分布必须达到一定值。
更多推荐
凝固,金属,液态,过程,铸型,界面
发布评论