城市道桥与防洪
2019年5月第5期
要:按照目前的规范标准进行公路设计时,一般路段与完全超高路段的合成坡度都能保证满足要求,
而超高渐变段的合成坡度却往往被忽略,导致现有公路的积水路段多在弯道处,影响行车安全。为此,从理论上分析了合成坡度的计算方法和影响因素,并进行了合成坡度的应用分析。
关键词:公路;超高渐变率;超高渐变段;合成坡度中图分类号:U416.36
文献标志码:B
文章编号:1009-7716(2019)05-0258-03
关于公路超高渐变段合成坡度解析与应用
收稿日期:2019-01-28作者简介:宋世磊(1983—),男,硕士,工程师,从事道路工程设计工作。
0引言
汽车作为现代人出行的主要交通工具,其行
驶安全极为重要。路面的合成坡度是车辆行驶中最容易被人忽略的因素,很多驾驶人员更多地关注于前方路况,而一些交通事故却常常会发生在进、出弯道时,即超高渐变段附近。该区域的路面
易出现积水,前车溅水形成的水幕影响通视,
积水过多也会造成路面湿滑,这些都是影响行车安全
的关键因素。作为公路设计人员,
可从路面合成坡度角度考虑消除路面积水,保证合成坡度值大于
等于0.5%,以满足最小排水要求,
减少路面积水[1]。1主要概念
(1)超高渐变段:从直线路段的横向坡渐变到
曲线路段具有超高单向坡的过渡段。
(2)超高渐变率:超高旋转轴与行车道
(设路缘带时为路缘带)外侧边缘线之间相对升降的比率。
(3)合成坡度:由路线纵坡与路拱横坡或弯道超高横坡组成的坡度,其方向为流水线方向。
2相关公式
2.1超高渐变段长度
公路超高渐变段采用线性过渡渐变方式,此
长度与渐变率的关系如下式[1]:
L c =Δi ×B /P (1)
式中:L c 为超高渐变段长度,m ;Δi 为超高横坡度与路拱坡度的代数差,%;B 为超高旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度,m ;P 为超高渐变率。
根据上述公式定义,通常在设计标准与平面线
性确定后,L c 与Δi 即为不变的定值,
B 与P 成正比关系,所以就可以将行车道(设路缘带时为路缘带)外侧边缘处的超高渐变率P 看作是最大超高值,而在旋转轴处可看作P =0,故该P 值在指向圆心方向由0渐变到最大超高值,并非定值,呈线性渐变方式,这与文献[2]中对P 值的描述有所不同。2.2合成坡度
根据相关规范[1]及文献[2],
合成坡度计算公式如下式:
i H =i 2h +i 2z √或i H =i 2E +i 2z
√(2)
i H =i 2e +(i z +p )√2(3)
式中:i H 为合成坡度,%;i h 、i E 分别为正常路拱横坡坡度、完全超高横坡坡度,%,旋转轴向下为负,旋转轴向上为正,适用于不设超高路段及完全超高路段;i e 为超高渐变段路面横坡坡度,%,旋转轴向下为负,旋转轴向上为正,仅适用于超高渐变段;i z 为
纵坡坡度,%,沿前进方向坡度向上为正,
坡度向下为负;p 为某计算点的纵向超高渐变率。
由于p 代表行车道(设路缘带时为路缘带)外侧边缘处纵向坡度值,为了取值与路线纵坡一致,
宋世磊
(上海勘测设计研究院有限公司,上海市200335)
DOI:10.ki.csdqyfh.2019.05.070
科技研究
258
城市道桥与防洪
2019年5月第5期
图1超高过渡变化图
规定上坡为正,下坡为负。+p 表示曲线外侧路拱横
坡抬高过程,即由正常路面横坡过渡到单向超高横坡,如图1(a )所示;-p 值表示曲线外侧路拱横坡降低过程,即由单向超高横坡过渡到正常路面
横坡[2-3],
如图1(b )所示。3路面合成坡度解析与应用
3.1P 与i e 变量参数解析
由式(2)、式(3)可知,路面某计算点的合成坡度i H 受该点处的纵坡坡度i z 、纵向超高渐变率p 、正常路拱横坡i h 及超高横坡坡度i e (或i E )
综合因素的影响。在路线不设超高路段及完全超高路段,i z 与i h 、i E 皆为定值,计算比较简单;而在超高渐变段,i z 虽为定值,p 与i e 却为变值,p 是从超高旋转轴至行车道(设路缘带时为路缘带)外侧边缘线性过渡渐变的,i e 则是沿渐变段前进方向线性过渡渐变的。
3.2超高渐变段横坡坡度解析
由于i e 为超高渐变段横坡坡度,且是线性过渡渐变的,则根据线性方式得出i e 计算式如下:
i e =i E k +i h (1-k )
(4)式中:k 为超高渐变段起(终)
点至某计算点在旋转轴上的垂足之间的距离L 占整个渐变段长度L c 的比例,k =L L c
≤1。
3.3纵向超高渐变率解析
由式(1)可以反推出某计算点的纵向超高渐
变率p 公式为:
p =P b B =Δi ×B L c ×b B =(i E -i h )×b L c
(5)
式中:b 为某计算点到旋转轴的垂直距离,m 。3.4合成坡度解析
将式(4)、式(5)代入式(3),可得出路面某计
算点合成坡度的计算公式:
i H =
i E L L c
+i h 1-L
L c (
)[
]2
+i z +(i E -i h )×
b
L c
[
]
2
√(6)
3.5各计算参数相互关系
为了便于理解各计算参数的相互关系,将超
高渐变段回旋线视为直线,
其长度保持不变;以超高渐变段ZH 或HZ 点为坐标原点,HY 或YH 点
方向为横轴正向(L ),以渐变段外侧方向为纵轴正
向(b ),若某计算点坐标为(L ,b ),各相关计算参数
的平面关系图和纵向剖面关系图见图2、图3。
若超高渐变段未设置在全缓和曲线段上,
而是靠近圆曲线一侧,则坐标原点为超高渐变段设置起点或终点。3.6合成坡度应用
在实际工程设计中,进行路线平面设计前,需要预先确定设计标准、平曲线参数等技术指标,
待平面、纵断面设计完成后,式(6)中的i E 、
i h 、L c 、i z 即成为已知数值,欲计算任何一点Q (L ,b )的合成坡度,皆可以通过该公式计算得到。
例:某山区二级公路项目,
设计速度40km/h ,路基宽度8.5m ,行车道宽2×3.5m=7.0m ,土路肩宽2×0.75m=1.5m ,路线长17.735km 。
道路路拱横坡为2%,土路肩横坡为3%,超高过渡方式采用绕道路中心线旋转,最大超高采用6%,超高横坡按表1所列数值范围取用;超高过渡
为线性过渡,其中JD19、JD20曲线元素参数、
纵坡坡度见表2。由表1、表2可得计算合成坡度的各参数取值,见表3。
将表3内的数据代入式(6),即可求出任何一点
的合成坡度。下面以点A (K131+175左2.5m )、
点(a )正常路面横坡过渡到单向超高横坡
(b )单向超高横坡过渡到正常路面横坡
图2平面关系图(以ZH 点至HY 点为例)
图3纵向剖面关系图
(以ZH 点至HY 点为
例)科技研究259
城市道桥与防洪
2019年5月第5期
B (K131+360右2.0m )为例,计算这两点的合成坡
度。
由式(4)、式(5)可计算出点A 、B 的相对坐标
(L ,b )分别为A (37.093,2.5),B (30.304,2.0),
进而可以计算得到A 、B 两点的合成坡度分别为:i H A =2.99%、i H B =2.63%。3.7合成坡度应用分析
由式(2)可知,即使纵坡坡度i z =0,无论是不设
超高路段,还是完全超高路段,
路面的合成坡度都会大于等于0.5%,满足《公路路线设计规范》(JTG D20—2017)中第8.5.3条的排水要求,
故合成坡度出现小于0.5%时,主要存在于超高渐变段。
由式(3)可知,i z 与p 有正负之分,
且根据《公路路线设计规范》
(JTG D20—2017)中第8.2.3条与第7.5.4条的规定,可得到取值范围:0.3%≤i z ≤最大纵坡值,0%≤
p ≤2%。而由本文3.5节可知,i z 有正负值,而p 始终为正值。
故当i z 与p 皆为正值时,i z +p ≥0.3%,此时i e ≥0.4%,则i H ≥0.5%,此种情况主要对i e <0.4%区域进行纵坡设计考虑即可;当i z 与p 为-i z 、+p 时,i z 与p 方向不同,会相互抵消坡度值,此时i H 主要取决于i e ,此时对i e <0.5区域进行纵坡设计考虑即可。
为更加便于理解,假定式(4)中i E =6%,i h =
-2%,当i z 与p 皆为正值,i z +p ≥0.3%,且i e <0.4%时,k 取值范围为0.2≤k ≤0.3,而当i z 与p 为-i z 、+p ,且i e <0.5%时,k 取值范围为0.1875≤k ≤
0.3125,即上坡路段(i e ≥0.3%)时,合成坡度i H <
0.5%会出现在ZH 点至HY 点之间0.2L c ≤L ≤
0.3L c 路段;下坡路段(i z ≤-0.3%)时,合成坡度i H <
0.5%可能会出现在ZH 点至HY 点之间0.1875L c ≤L ≤0.3125L c 路段。
4结语
(1)纵向超高渐变率p 是从超高旋转轴至行车道(设路缘带时为路缘带)外侧边缘线性过渡渐变的,超高渐变段横坡坡度i e 则是沿渐变段前进方向线性过渡渐变的。
(2)根据目前公路规范要求,
路面合成坡度出现小于0.5%时,主要存在于超高渐变段。
(3)根据本文各计算参数相互关系设定,i z 有
正负值,
而p 始终为正值。(4)假定i E =6%,
i h =-2%,当i z 与p 皆为正值时,积水路面会出现在ZH 点至HY 点之间0.2L c ≤
L ≤0.3L c 路段;当i z 与p 为-i z 、+p 时,积水路段会
出现在ZH 点至HY 点之间0.1875L c ≤L ≤0.3125L c 路段。
(5)通过上述结论,可以有针对性地检查路线设计平曲线范围内的合成坡度,进而可以相应调整超高渐变段的设置或纵断面设计参数,能更合
理、有效地布设排水设施,
对实际工程设计具有一定的帮助、指导和借鉴作用。
参考文献:
[1]JTG D20—2017,公路路线设计规范[S].北京:中华人民共和国
交通部,2017.
[2]余万,鲁海军.路面合成坡度与超高渐变率的选用[J].中外公路,
2006(26):5-7.
[3]张宝君.路面合成坡度与超高渐变率的选用[J].商品储运与养
护,2008(5):96-97.
表1超高横坡表
表2
JD19、JD20曲线元素及纵坡坡度表表3JD19、JD20合成坡度参数表
圆曲线半径/m 410~600250~410150~250
90~15060~90超高值/%
2
3
4
5
6
交点半径/m 缓和曲线长度/m
起始桩号纵坡/%JD1912565/65K131+137.907-2.5JD20
200
55/55
K131+329.696
-2.5
交点i E /%
i h /%
L c /m
i z /%
JD195-265-2.5JD20
4
-2
55
-
2.5
科技研究
260
method is required that the inspection capacity and of equipment and the availability of data collection are very important in the field inspection.In addition,the installation and preparation of sounding pipe as the inspection channel are directly related to the success of the inspection.The examples explain the result of its influence,the influence of installation of sounding pipe and shortcoming of pipe on the waveform of acoustic transmission method,and the supplementary verification method.
Keywords:foundation pile,acoustic transmission method,integrality inspection of pile body,sounding pipe
Study of Sound Velocity Correction Coefficient in CECS02Standard Dong Yu(251) Abstract:In order to revise Technical Specification for Concrete Strength Detection by Ultrasonic Rebound Method(CECS02:2019),the ultrasonic sound velocity correction coefficientβin the current Technical S
pecification for Concrete Strength Detection by Ultrasonic Rebound Method(CECS02:2005)edition standard is systematically tested.The study shows that the relationship between the measured sound velocities on the side-side and the top-bottom surfaces of the concrete does not exist in the correction coefficientβ=1.034stipulated in the current CECS02:2005.At the same time,the ratios of measured sound velocity on the side and top surfaces,and the side and bottom surfaces of concrete achieved by the test data are no more than2%,that is,when the top or bottom surfaces of concrete pouring stipulated in the current CECS02:2005 standard are measured,the representative value of sound velocity in concrete of tested zone is rather large, and should be corrected by±5%.
Keywords:ultrasonic inspection,sound velocity,correction coefficient
Study on Influence Factor and Application of Nitrogen and Phosphorus Removal by Struvite Method
Zheng Jun(254) Abstract:The struvite(MgNH4PO4窑6H2O)method can realize both removal and recovery of nitrogen and phosphorus pollution in the wastewater,and has the engineering utilization potentiality.This paper introduces the current study on the factors influencing the reaction of struvite formation and the struvite technological system,and analyzes the utilization potentiality of struvite.The struvite reaction influencing factors are mainly the ion concentration and ratio,pH,reactio
n time,reaction temperature and foreign ion.The application study of struvite is mainly focused on the optimization design of technological system structure and the strengthening trapping measures of struvite product.
Keywords:struvite,nitrogen removal,phosphorus removal
Analysis and Application on Synthetic Slope of Super-elevation Transition Section of Highway Song Shilei(258) Abstract:When a highway is designed in accordance with the current specifications and standards,the
synthetic slope of the general section and the full super-elevation section can all meet the requirements.But the synthetic slope of super-elevation transition section is ignored usually.As a result,the waterlogged sections of the existing highways are mostly at the curves,which affect the traffic safety.Therefore,the calculation method and influencing factors of the synthetic slope are analyzed theoretically,and the application of the synthetic slope is analyzed.
Keywords:highway,super-elevation transition ratio,super-elevation transition section,synthetic slope
Experimental Research on Molding Method of Large-grain Large-porous Asphalt Mixtures Gao Xiang
(261) Abstract:The road performances of large-grain large-porous asphalt mixtures are significantly affected by molding temperature and compaction numbers.In order to determine the indoor molding method of MAC modified asphalt large-grain larger-porous asphalt mixtures,the softening point test is firstly used to analyze the effect of heating temperature on the softening point test result of MAC modified asphalt and to recommend the heating temperature of MAC modified asphalt.Then the large Marshall Compaction Test is used to analyze the effect of compaction numbers on the volume indicators of large-grain large-porous asphalt mixtures.The test results show that softening point growth trend of MAC modified asphalt is first rapid and then slow at the temperature node of195℃with the increment of heating temperature.With the increment of compaction number,the bulk-volume relative density of large-grain large-porous asphalt mixture is firstly increased and then decreased,and accordingly the void ratio is firstly decreased and then increased.All reach the extreme values at112compaction numbers.The asphalt heating temperature of195℃and the compaction numbers of112times are recommended as the indoor molding method of large-grain large-porous asphalt mixtures.
Keywords:large-grain large-porous asphalt mixture,molding method,molding temperature,compaction numbers
Aging Performance and Regeneration Technology of RAP Material Min Tianyi(264) Abstract:Considering the pavement asphalt bearing the load pressure aging,ultraviolet ray light aging and temperature heat aging at the same time under the natural condition,this paper proposes the synthesis simulation aging test of asphalt on the basis of the single factor aging testing method of asphalt in Testing Regulations of Asphalt and Bituminous Mixture for Highway Engineering.The asphalt penetration and ductility are reduced,and the softening points are increased after laboratory synthesis simulation aging.This paper introduces the recovery method,grading design and regeneration function of RAP material,and studies the difference of four different RAP material regeneration technologies.
Keywords:RAP,aging performance,regeneration technology,preparation technology

更多推荐

超高,坡度,渐变,合成