五年级数学下册解决问题解答应用题练习题50带答案解析(1)
一、人教五年级下册数学应用题
1.有一张长方形纸,长70厘米,宽50厘米,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最长是几厘米?
2.明明的房间的四壁和房顶都贴上墙纸,房间长4米,宽3米,高3米。该房间门窗面积是4.7平方米(门窗不贴墙纸),如果这样,这个房间至少需要多大面积的墙纸?
3.王玲看一本故事书,第一天看了全书的,第二天看了全书的。
(1)两天一共读了全书的几分之几?
(2)还剩几分之几没看?
4.有一堆苹果,如果按每6个一份或每8个一份进行分,结果都多1个,这堆苹果最少有多少个?
5.把50克糖溶解在300克水中化成糖水,糖的重量是水的几分之几?糖占糖水的几分之几?(结果化成最简分数)
6.下面是某市一个月天气变化情况统计图。
(1)多云的天数是晴天的几分之几?
(2)阴天的天数是这个月总天数的几分之几?
7.把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余。
(1)每根短彩带最长是多少厘米?
(2)一共可以剪成多少段?
8.如图,从长方体上挖去棱长为2cm的小正方体,求这个立体图形的表面积。
9.把一张长15厘米,宽9厘米的长方形纸裁成同样大的正方形,如果要求纸没有剩余,裁出的正方形边长最大是多少厘米?一共可以裁出多少个这样的正方形?(在图中画一画,再解答)
10.一个长方体玻璃容器,底面是边长2分米的正方形,向容器中倒进6升的水,再把一个西瓜放进水中,这时水面高度是25厘米(水没有溢出),这个西瓜的体积是多少?    11.蓬溪县某小学校五(2)
班组织植树活动,在活动中发现,小宇和小斌同时栽第一棵树苗,小宇在每隔6分钟栽一棵树苗,小斌在每隔8分钟栽一棵树苗,至少多少分钟后两人再次同时栽树苗?此时,小宇和小斌各栽了多少棵树苗?
12.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
13.要测量一块不规则的岩石标本的体积,实验小组的同学先将1L水倒进一个长方体水箱,量得水深8cm,然后将岩石标本完全浸没在水中,这时水深13cm。请你利用观察到的数据计算岩石标本的体积。
14.一条公路,已经修了干米,剩下的比已经修了的多千米,这条公路有多少千米?15.一间长方体库房,长5m、宽4m、高3m,在房顶和四面刷油漆(门窗忽略不计),刷油漆的面积是多少平方米?
16.把长16米和40米的两根绳子截成同样长的小段,没有剩余。每段最长是多少?共截成了多少段?
17.一个长方体玻璃容器,从里面量长、宽均是2dm,向容器中倒入5L水,再把一个土豆放入水中。这时量得容器内的水深13cm。这个土豆的体积是多少?
18.一个长方形铁皮,长30cm,宽25 cm,从四个角各切掉一个边长为4cm的正方形,然后做成盒子,这个盒子的底面积是多少?它的容积是多少?
19.
(1)求出下图长方体的体积。
(2)下图是由棱长1cm的小正方体摆成的,请计算这个图形的表面积。
20.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。
(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
21.矫正与反思
A杯:把4克糖溶解在16克水中化成糖水;
B杯:把5克糖溶解在22克水中化成糖水。
这两杯糖水,哪一杯会更甜?
(1)请你在上面正确的做法后面()里打√。
(2)你喜欢谁的做法?请你解释其思路。
22.下面是林叔叔家和张叔叔家去年上半年用电情况统计图。
(1)林叔叔第二季度平均每月用电多少千瓦时?
(2)张叔叔家二月份的用电量是第一季度用电量的几分之几?
23.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。
(1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
24.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱?
25.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
26.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
27.利用天平秤次品的方法,下列数量的物品怎样分成3份应该怎样分?请把分的数量写在圆圈里。
28.已知一包糖果不足50颗,平均分给12个人正好分完,平均分给16个人也正好分完,这包糖果共有多少颗?
29.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。
(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)
(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)
30.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
【参考答案】***试卷处理标记,请不要删除
一、人教五年级下册数学应用题
1.解:70=7×2×5;
50=5×2×5;
70和50的最大公因数是2×5=10,剪出的小正方形的边长最长是10厘米。
答:剪出的小正方形的边长最长是10厘米。
【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也是剪出的小正方形的边长的最大数值,据此解答。
2.解:(4×3+3×3)×2+4×3-4.7
=(12+9)×2+12-4.7
=21×2+12-4.7
=42+12-4.7
=54-4.7
=49.3(平方米)
答:这个房间至少需要49.3平方米的墙纸。
【解析】【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,本题中至少需要墙纸的面积=(长×高+宽×高)×2+长×宽-门窗的面积,代入数值计算即可。
3.(1)
答:两天一共读了全书的。

更多推荐

长方体,正方形,鱼缸,体积