2024年2月12日发(作者:)

第06讲一元一次方程的应用(核心考点讲与练)

一.由实际问题抽象出一元一次方程

审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.

(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.

(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.

二.一元一次方程的应用

(一)一元一次方程解应用题的类型有:

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.

列一元一次方程解应用题的五个步骤

1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

3.列:根据等量关系列出方程.

4.解:解方程,求得未知数的值.

5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

一.一元一次方程的应用(共9小题)

1.(2021秋•奉贤区期末)甲乙两车从相距250千米的两地同时出发,相向而行,2小时后相遇.已知甲车的速度与乙车的速度比是2:3,求甲、乙两车的速度.

2.(2021秋•奉贤区期末)一种商品的原价是100元,先提价10%,又降价10%,则现价( )元.

A.100

B.99

C.108.9

D.101

3.(2021秋•定西期末)甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?

4.(2021秋•城关区期末)如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )

A.64

B.72

C.98

D.118

5.(2021秋•闵行区期末)列方程求解:某数的是8的1,求这个数.

6.(2021秋•浦东新区期末)一件商品的原价是6000元,打八折后还获利20%,求打折后的售价及进价.

7.(2021秋•阳江期末)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?

8.(2021秋•黄石期末)某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.

9.(2021秋•闵行区期末)某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:

方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折;

方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)

(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.

(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?

(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元?

二.由实际问题抽象出一元一次方程(共11小题)

10.(2021春•嘉定区期中)一项工程,甲单独做需要3天完成,乙单独做需要6天完成,两人合作x天可完成,则根据题意可列方程为( )

A.3x+6x=1

B.x=1

C.(+)x=1

D.x=x+1

11.(2021春•嘉定区期中)根据“x的相反数减去5的差为1”可列方程 .

12.(2021春•松江区期末)某银行一年定期储蓄的年利率是2.25%,小明爸爸取出一年到期的本利和共计10225元.(注:不计利息税)若设小明爸爸存入银行的本金是x元,则根据题意可列方程为 .

13.(2021春•普陀区期中)小杰妈妈去银行存款,银行一年定期储蓄的年利率是1.5%,小杰妈妈两年后取出的本利和共61800元,设她存入银行的本金为x元,那么下列方程中,正确的是( )

A.x•1.5%×2=61800

C.x•(1+1.5%)×2=61800

B.x+x•1.5%×2=61800

D.(1+1.5%x)×2=61800

14.(2021春•奉贤区期中)货轮从甲地顺流开往乙地,所用时间比乙地逆流回到甲地少2.5小时,已知货轮在静水中速度为每小时24千米,水流速度为每小时3千米,求甲乙两地距离.设两地距离为x千米,则可列方程( )

A.C.

B.D.

15.(2021春•普陀区期末)一辆汽车从A城出发驶向B城,如果以每小时50千米的速度行驶恰好准时到达,如果以每小时40千米的速度行驶,会比规定时间晚15分钟到达.设A、B两城的距离为x千米,根据题意,可列出方程是 .

16.(2021•嘉定区二模)为了估计某个鱼塘里的鱼的数量,养殖工人网住了50条鱼,在每条鱼的尾巴上做个记号后,又将鱼放回鱼塘.等鱼游散后再随机撒网,网住60条鱼,发现其中有2条鱼的尾巴上有记号.设该鱼塘里有x条鱼,依据题意,可以列出方程: .

17.(2021春•杨浦区校级期中)x人住房,若每间住6个人,余8个人;若每间住7个人,则有一间房空3个床位,则可列方程为 .

18.(2021春•宝山区期末)一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )

A.=

B.=

C.﹣8=+3

D.4x+8=5x﹣3

19.(2021春•普陀区校级月考)根据数量关系列出方程:某数x的与﹣1的差等于10,方程为: .

20.(2020春•宝山区期中)根据条件列方程:

(1)正方形的边长为2x,周长为50厘米.

(2)x的相反数减去3的差是x的2倍.

分层提分

题组A 基础过关练

一.选择题(共3小题)

1.(2021春•奉贤区期中)某商店实行“买四斤送一斤”促销活动,“买四斤送一斤”相当于打( )折销售.

A.二

B.二五

C.七五

D.八

2.(2020春•宝山区期中)一双皮鞋现在售价为100元,比原价降低了20%,则原价为( )

A.80元

B.125元

C.120元

是,这个数是( )

C.

D.

D.145元

3.(2021秋•浦东新区期中)一个数的A.

B.

二.填空题(共6小题)

4.(2021春•松江区期末)某银行一年定期储蓄的年利率是2.25%,小明爸爸取出一年到期的本利和共计10225元.(注:不计利息税)若设小明爸爸存入银行的本金是x元,则根据题意可列方程为 .

5.(2021•浦东新区模拟)某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为 元.

6.(2020秋•松江区期末)六年级(1)班学生去野外郊游,无意中发现了一口枯井,外号“神童”的小明想了个办法测出井深,他的方法是:用绳子测量井深,将一根绳子先折成三折来量,量出井外,还余1米,将一根绳子先折成四折来量,量出井外还余米,请你算算看,这口枯井深为 米.

7.(2020秋•奉化区校级期末)一个数的是,那么这个数是 .

8.(2021春•上海期中)某同学把积攒的零用钱1000元存入银行,月利率是0.24%,如果到期他连本带利可取回1024元,那么他共存了 个月.

9.(2020秋•奉化区校级期末)学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程 .

三.解答题(共7小题)

10.(2021春•浦东新区期中)现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?

11.(2021春•青浦区期中)小丽从家到学校有公路和小路两种路径,已知公路比小路远320米.早上小丽以61米/分钟的速度从公路去上学,10分钟后,爸爸发现她的作业忘带了,就以90米/分钟的速度沿小路去追赶,结果恰好在学校门口追上小丽.问小丽从家到学校的公路有多少米?

12.(2021春•奉贤区期中)六年级和七年级分别有192人和133人,现在需要从两个年级选出133人参加“读书节”活动,并且要使六年级,七年级剩余学生数之比为2:1,问应从六年级,七年级各选出多少人?

13.(2021春•奉贤区期中)一家商店将某种服装每件按进价加价40%作为标价,随后又打出八折优惠大促销,结果每件服装还可获利60元.问这件服装每件的进价是多少元?

14.(2021春•上海期中)列方程解应用题:六年级学生若干人报名参加课外活动小组,男女生人数之比为3:4,后来又报了20名男生,这时男生人数恰好是女生人数的2倍,求最初报名时男生与女生各有多少人?

15.(2020秋•柳南区校级期中)一家商店将某种服装按成本加40%作为标价,又以标价的8折卖出,结果每件服装仍可获利15元,问:

(1)这种服装每件的成本价是多少元?

(2)成本提高40%后的标价是多少元?

16.(2020秋•长宁区期末)一件上衣的成本价为500元,以40%的盈利率定价,后因季节性原因商家八折销售出此上衣,问:

(1)这件服装的定价是多少元?

(2)这件服装最后的盈利率是多少?

题组B 能力提升练

一.选择题(共1小题)

1.(2021秋•青浦区校级期中)某外贸服饰店一天内销售两种服装的情况是,甲种服装共卖得200元,乙种服装共卖得100元,若按两种服装的成本分别计算,甲种服装盈利,乙种服装亏本,那么两种服装合起来算该外贸店这一天是( )

A.盈利

B.盈利

C.盈利

D.盈利

二.填空题(共2小题)

2.(2020秋•徐汇区期末)上海男篮为了冲击季后赛,正努力提高自己的胜率.现在他们的胜率为45%,在接下来的8场客场比赛中,若能取得6场胜利,则可以将队伍的胜率提升到50%.那么到目前为止,他们在本赛季已经取得了 场胜利.

3.(2021春•浦东新区期中)某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是 人.

三.解答题(共11小题)

4.(2021春•上海期中)阅读下面材料并回答问题:点A、B在数轴上分别表示数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设A在原点,如图1,AB=|b|=|a﹣b|;当A、B两点都不在原点时,

(1)如图②,点A、B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;

(2)如图③,点A、B都在原点左边,AB=OB﹣OA=|b|﹣|a|=(﹣b)﹣(﹣a)=|a﹣b|;

(3)如图④,点A、B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A、B两点之间的距离AB=|a﹣b|.

(1)回答问题:数轴上表示﹣3和﹣8的两点之间的距离是 .

(2)若数轴上表示x和﹣2的两点分别是点A、B,AB=5,那么x= .

(3)若数轴上点A表示数﹣1,点B表示数7,动点P、Q分别同时从点A、点B出发沿着数轴正方向移动,点P的移动速度是每秒3个单位长度,点Q的移动速度是每秒2个单位长度,求①运动几秒后,点P追上点Q?②运动几秒后,P、Q两点相距3个单位长度?

5.(2021春•杨浦区校级期中)甲、乙两种商品成本共240元,已知甲商品按40%的利润率定价,乙商品按45%的利润率定价,后来甲打9折出售,乙打8折出售.结果共获利润48元,两种

商品成本各为多少元?

6.(2021春•奉贤区期中)小李和爸爸周末去体育中心晨练,两人沿400米的跑道匀速跑步,每次总是小李跑了2圈爸爸跑3圈,一天两人在同地反向而跑,小李最后发现隔了32秒两人第一次相遇.

(1)求两人的速度.

(2)若小李和爸爸在同地同向而跑,则过多久两个人首次相遇?

7.(2020秋•静安区期末)小丽看一本科技书,第一天看了这本书的一半,第二天看了这本书的,还剩下20页没有看,求这本科技书的页数.

8.(2021春•杨浦区校级期中)某项工程,甲单独做需18天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?

9.(2021春•临渭区期末)某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?

10.(2021春•奉贤区期中)某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进A、B两种不同型号的电视机共50台,用去9万元,求商场购进这两种型号的电视机各多少台?

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元.该家电商场用9万元从生产厂家购进两种不同型号的电视机共50台,为了使销售时获利最多,该家电商场应该购买哪两种型号的电视机?分别购进多少台?

11.(2016春•闵行区期中)某人从甲地出发到乙地办事,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问甲乙两地的距离是多少千米?

12.(2015春•浦东新区期末)减少雾霾,环保出行.家住上海的小明家人经常拼车出行.某拼车公司规定车主“一对一服务”,即车主每次服务一个拼车订单,不能中途接送他人,并按照乘客上、下车地点、时间准时接送乘客.按照拼车所发生的成本等制定了合理的付费规则.其中上海、昆明两个城市拼车付费规则如下:(见表1、表2)

表1 上海拼车付费规则

路程x(公里)

0<x≤3

3<x≤10

x>10

表2 昆明拼车付费规则

路程x(公里)

x>0

计费规则

4元+1.2元/公里

计费规则

10元

1.5元/公里

1元/公里

例如,小李拼车一次的路程是15公里,如果他在上海,那么所付的费用为10+(10﹣3)×1.5+(15﹣10)×1=25.5元;如果他在昆明,所付的费用为4+15×1.2=22元.

(1)一天,小明爸爸从家到单位拼车出行一次,付费16元,那么从他家到单位的拼车路程是多少公里?

(2)如果小明爸爸从上海到昆明出差的路上,除了乘动车外的路程,他都选择该拼车公司拼车出行.已知小明爸爸在上海和昆明两地各拼车出行一次,且每次拼车路程大于3公里.

①如果小明爸爸在两地拼车路程共计50公里,付费71.3元,那么他在两地拼车的路程各为多少公里?

②如果小明爸爸在上海拼车的路程超过10公里,他在两地拼车的费用共36.1元,且在两地拼车的路程都是整数公里,那么小明爸爸在这两地拼车的路程各为多少公里?

13.(2015春•闵行区期中)上海市出租车收费标准分两个时间段:日间段(5:00~23:00)和夜间段(23:00~次日5:00).如日间段:起步价14元(即使不满3公里也要收取14元);超过3公里并且不大于10公里的,超过部分按每公里2.4元计算;总里程超过10公里后,超过部分按每公里3.6元计算.而夜间段的收费在日间段的基础上都有所上浮,详见下表:

上海市出租车收费标准

公里数 日间段

(5:00~23:00)

夜间段

(23:00~次日5:00)

0~3公里

3~10公里

10公里以上

14元 18元

2.4元/公里(超过3公里部分) 3.1元/公里(超过3公里部分)

3.6元/公里(超过10公里部分)

4.7元/公里(超过10公里部分)

(1)若在日间段乘坐出租车,行程5.5公里,此时应付车费 元.

(2)今年寒假小明一家出去旅游,飞机起飞的时间是上午9:00,由于家离机场较远,因此他们提前了3小时从家出发去机场,打车费为164元,请算算小明家离机场有多少公里?(注:忽略出租车行驶中的所有等候时间.)

14.(2016春•浦东新区期中)从小华家到世纪公园,步行比乘公交车多用36分钟,已知他步行速度为每小时8千米,公交车的速度为每小时40千米,问小华家离世纪公园相距多少千米?


更多推荐

拼车,速度,问题,服装,爸爸,商品,已知,上海